طراحی مدل استفاده از هوش مصنوعی برای تغییر فرایندهای واحد روابط عمومی سازمان با تاکید بر مدیریت دانش سازمانی

نوع مقاله : مقاله پژوهشی با اصالت

نویسندگان

1 دانشجوی کارشناسی ارشد روابط عمومی گرایش صنعت و بازرگانی، گروه روابط عمومی، دانشکده علوم ارتباطات، دانشگاه علامه‌طباطبائی، تهران، ایران

2 گروه علوم تربیتی، دانشگاه فرهنگیان، زنجان، ایران

10.47176/smok.2025.1856

چکیده

هدف: با توجه به تغییرات سریع محیط کسب و کار و نیاز به پاسخگویی به انتظارات متنوع ذینفعان، استفاده از هوش مصنوعی می‌تواند به عنوان راهکاری اثربخش برای ارتقاء عملکرد واحد روابط عمومی مطرح شود. همچنین، مدیریت دانش به عنوان عنصری کلیدی در بهبود فرآیندها و تصمیم‌گیری‌ها در این واحد، نقش مهمی ایفا می‌کند. هدف این پژوهش طراحی مدل استفاده از هوش مصنوعی در واحد روابط عمومی سازمان‌ها با تأکید بر مدیریت دانش سازمانی است.

روش پژوهش: پژوهش کاربردی حاضر مبتنی بر پارادایم تفسیری با رویکردی کیفی، از نوع نظریۀ داده‌بنیاد با استفاده از رهیافت نظام‌مند کوربین و اشتراوس است. جامعه آماری این پژوهش شامل متخصصین و دانشجویان فعال در حوزۀ روابط عمومی، مدیریت منابع انسانی، هوش مصنوعی و روانشناسی بود. نمونۀ پژوهش با استفاده از روش نمونه‌گیری هدفمند از نوع گلوله برفی از میان جامعه آماری به تعداد 17 نفر تا رسیدن به اشباع نظری داده‌ها انتخاب شد. جهت گردآوری داده‌ها از مصاحبه نیمه ساختاریافته استفاده شد. جهت تأمین روایی پژوهش از کنترل بیرونی استفاده شد. پایایی نیز با استفاده از روش کدگذار دوم با ضریب توافق 86% تأیید شد.

یافته‌ها: بر اساس یافته‌ها، علل استفاده از هوش مصنوعی در واحد روابط عمومی سازمان‌ها در چهار مقولۀ کارایی و بهره‌وری، بهبود ارائه خدمات به مشتریان، تحقیقات و تحلیل بازار و جنبه‌های نوآورانه دسته‌بندی شد. عوامل زمینه‌ای در دو دستۀ شرایط تکنولوژیک و شرایط سازمانی، و عوامل مداخله‌گر به دو حیطه اصلی شرایط بازار و شرایط اجتماعی و قانونی تقسیم شد. راهبردها مشتمل بر پنج مقولۀ آموزش و توانمندسازی، فرهنگ‌سازی، ایجاد هماهنگی، راهبردهای عملیاتی و ایجاد آگاهی و انگیزه شناسایی شد. این راهبردها می‌تواند به بهبود ارتباطات، بهینه‌سازی فرآیندها، اعتبار و شفافیت، کاهش کیفیت ارتباطات و چالش‌های فنی و عملیاتی منجر شود و نقش چشم‌گیری در استفاده بهینه از هوش مصنوعی در واحد روابط عمومی سازمان‌ها ایفا کند.

نتیجه‌گیری: نتایج این پژوهش نشان می‌دهد که استفاده از هوش مصنوعی در واحد روابط عمومی سازمان‌ها می‌تواند به بهبود عملکرد و کارایی این واحد کمک کند. سازمان‌ها برای بهره‌برداری مؤثر از هوش مصنوعی در روابط عمومی، بایستی بر روی ایجاد زیرساخت‌های مناسب و فرهنگ سازمانی مناسب تمرکز کنند تا بتوانند از مزایای این فناوری بهره‌مند شوند. این مدل می‌تواند به عنوان راهنمای عملی برای سازمان‌ها در جهت استفاده مؤثر از هوش مصنوعی در روابط عمومی عمل کند و به بهبود ارتباطات و افزایش رضایت ذی‌نفعان منجر شود.

اصالت/ارزش: با توجه به تحولات سریع فناوری و نیاز به بهبود کارایی در ارتباطات سازمانی، این پژوهش به طور قابل توجهی به درک مدیران از اینکه چگونه هوش مصنوعی می‌تواند شیوه‌های روابط عمومی در سازمان‌ها را تغییر دهد کمک می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing a Model for Integrating Artificial Intelligence (AI) to Change the Organization’s Public Relations Unit’s Processes, With an Emphasis on Organizational Knowledge Management

نویسندگان [English]

  • Seyed Vahab Omat Mohammadi, 1
  • Ladan Hajianvari 2
  • Kimiya Mohaqeq 1
1 Master's degree student in Public Relations, Industry and Commerce, Department of Public Relations, Faculty of Communication Sciences, Allameh Tabatabai University, Tehran, Iran
2 Department of Educational Sciences, Farhangian University, Zanjan, Iran
چکیده [English]

Purpose: Although new technologies, such as artificial intelligence, are transforming the public relations and communications profession, there is a scarcity of research on the impact of artificial intelligence in this field. In recent years, significant advancements in artificial intelligence technology have prompted organizations to seek solutions for enhancing the efficiency and effectiveness of their public relations unit. Additionally, knowledge management serves as a crucial element in improving processes and decision-making within this unit. Consequently, there is an urgent need to design models that comprehensively examine the application of artificial intelligence within the public relations departments of organizations. However, comprehensive and practical frameworks for assessing the integration of artificial intelligence into current public relations practices are still lacking. Many organizations continue to rely on traditional and inefficient methods for managing their communications, failing to harness the potential of artificial intelligence. Additionally, a lack of awareness and insufficient training regarding these technologies among public relations professionals has hindered their acceptance and implementation. Therefore, this article aims to develop a model for utilizing artificial intelligence to transform the procedures of public relations unit in organizations, with a particular emphasis on organizational knowledge management, based on grounded theory. In this context, the present study seeks to identify the causal conditions, intervening factors, phenomena, background conditions, strategies, and consequences associated with the implementation of artificial intelligence in public relations departments by examining the experiences of professionals and students engaged in related fields.
Methodology: The current applied research is based on an interpretive (constructivist) paradigm with a qualitative approach, specifically focusing on data-driven theory to develop a model for the application of artificial intelligence in the public relations units of organizations. The statistical population for this study included faculty members, experts, and students engaged in the fields of public relations, human resource management, artificial intelligence, and psychology. A purposive snowball sampling method was employed to select the research sample, continuing until theoretical data saturation was achieved. Data collection was conducted through semi-structured interviews with experts, sociologists, and selected students from the relevant fields, resulting in a total of 17 participants being interviewed, which marked the point of theoretical saturation. Each interview lasted between 60 and 65 minutes. Following each session, the interview content was transcribed from the recorded audio files and manually coded using the systematic approach developed by Corbin and Strauss. The interview transcripts were initially coded and categorized paragraph by paragraph, followed by a comprehensive coding and categorization process conducted in three stages. After coding all 17 interviews, the researchers reviewed the codes, eliminating duplicates and merging similar codes. Ultimately, the causal, contextual, intervening, strategic, and consequential conditions related to the central theme of utilizing artificial intelligence within public relations units were identified. To ensure the validity of the research, triangulation and external validation through a third-party reviewer were employed. The reliability of this qualitative study was further confirmed by recording participants' voices with an interview recorder, meticulous note-taking during interviews, and involving a second coder who achieved an agreement coefficient of 86%. Finally, after incorporating feedback from three experts overseeing the research process, necessary revisions were made, and the final research model was constructed based on the systematic approach of data-driven theory.
Findings: Based on the analysis and review of the interview transcripts, along with the coding and categorization process, a total of 101 open codes were identified, highlighting the causal, contextual, intervening, strategic, and consequential conditions related to the central theme of utilizing artificial intelligence in the public relations units of organizations. The motivations for employing artificial intelligence in these units were classified into four main categories: efficiency and productivity, enhancement of customer service, market research and analysis, and innovative aspects. Contextual factors were divided into two categories: technological conditions and organizational conditions. Intervening factors were categorized into two primary areas: market conditions and social/legal conditions. Strategies for implementing AI were identified across five categories: training and empowerment, culture building, fostering coordination, operational strategies, and promoting awareness and motivation. These strategies are anticipated to lead to improved communication, process optimization, enhanced credibility and transparency, reduced communication quality issues, and addressing technical and operational challenges, all of which play a crucial role in the effective utilization of artificial intelligence within public relations units. Ultimately, this research offers significant insights for managers regarding the transformative potential of AI in public relations practices. Through a rigorous qualitative methodology grounded in empirical data, it sheds light on the opportunities and challenges associated with integrating AI into public relations. As organizations navigate an increasingly complex communications landscape, adopting AI technologies is vital for enhancing efficiency, improving stakeholder engagement, and maintaining a competitive edge. By identifying key components and developing an applied model for optimizing public relations practices through AI, this study explores the causal, contextual, intervening, strategic, and consequential conditions for AI implementation in public relations departments and aims to provide practical solutions to facilitate digital transformation within organizations.
Research limitations: Despite yielding valuable findings, this research has several limitations. The research methodology is a primary limitation of the present study. Although data were collected through semi-structured interviews and adhered to scientific principles, the small sample size may limit the diversity and representativeness of the results, potentially impacting the overall conclusions. Future researchers could enhance the qualitative data obtained from interviews by incorporating quantitative data, thereby providing a broader perspective on the research problem. It is recommended that future studies explore the role of human creativity in conjunction with artificial intelligence in public relations. This approach could help identify the strengths of both domains and offer solutions for more effective collaboration between humans and machines. Based on the findings of this research, organizations are encouraged to implement continuous training programs for their employees focused on artificial intelligence and its applications in public relations. Such initiatives can help develop the necessary skills for the effective and efficient use of these technologies. Given the rapid pace of technological change, organizations must continuously analyze market trends to leverage the latest innovations. Implementing artificial intelligence-based tools within public relations departments can significantly benefit organizations by enhancing their ability to adapt and thrive in a dynamic environment.
Originality/value: Considering the rapid technological advancements and the necessity to enhance efficiency in organizational communications, this research offers valuable insights for managers on how artificial intelligence can transform public relations practices within organizations.

کلیدواژه‌ها [English]

  • Artificial Intelligence
  • Public Relations
  • Communications
  • Human Resources
  • Organization

Copyright ©, Seyed Vahab Omat Mohammadi, Ladan Hajianvari, Kimiya Mohaqeq

License

Published by Imam Hossein University. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Abu Daqar, M., & Smoudy, A. (2019). The Role of Artificial Intelligence on Enhancing Customer Experience. International Review of Management and Marketing. 9. 22-31. https://doi.org/10.32479/irmm.8166
Abubakar, A., Elrehail, H., Alatailat, M., & Elçi, A. (2018). Knowledge management, decision-making style and organizational performance. Journal of Innovation & Knowledge, 4(2), 104-114. https://doi.org/10.1016/j.jik.2017.07.003
Ahi, A., Sinkovics, N., Shildibekov, Y., Sinkovics, R., & Mehandjiev, Nikolay. (2022). Advanced technologies and international business: A multidisciplinary analysis of the literature. International Business Review, 31(4), 101967. https://doi.org/10.1016/j.ibusrev.2021.101967
Al Hadeed, A. Y., Maysari, I., Aldroubi, M. M., Attar, R. W., Al Olaimat, F., & Habes, M. (2024). Role of public relations practices in content management: the mediating role of new media platforms. Frontiers in Sociology, 8(1): 1273371. https://doi.org/10.3389/fsoc.2023.1273371
Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Applied Sciences, 13(12), 7082. https://doi.org/10.3390/app13127082
Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2024). AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability, 16(5), 1790. https://doi.org/10.3390/su16051790
Anani-Bossman, A., Nutsugah, N., & Abudulai, J. (2024). Artificial Intelligence in Public Relations and Communication Management: Perspectives of Ghanaian Professionals. Communicare: Journal for Communication Studies in Africa, 43(1), 3-13. https://doi.org/10.36615/jcsa.v43i1.2506
Arun Kumar, A., & Kumar, U. (2015). Knowledge Management: A Review. International Journal of Academic Research in Social Sciences & Humanities, 1(1), 9-17.  https://ssrn.com/abstract=4066672
Aslan, A. (2023). Communication in Public Relations. In book: Public Relations On the Axis of Communication, pp. 235-286.
Babatunde, S., Odejide, O., Edunjobi, T., & Ogundipe, D. (2024). THE ROLE OF AI IN MARKETING PERSONALIZATION: A THEORETICAL EXPLORATION OF CONSUMER ENGAGEMENT STRATEGIES. International Journal of Management & Entrepreneurship Research, 6(3), 936-949. https://doi.org/10.51594/ijmer.v6i3.964
Babu, N., Marda, K., Mishra, A., Bhattar, S., Ahluwalia, A., & Services, E. (2024). The Impact of Artificial Intelligence in the Workplace and its Effect on the Digital Wellbeing of Employees. Journal for Studies in Management and Planning, 10(4), 1-32. https://doi.org/10.5281/zenodo.10936348
Bahri, R., Fasanghari, M., & Yazdanian, V. (2022). Requirements and proposed framework for the use of new technologies in crisis control and management based on communication and information technology. C4I Journal, 5(3), 1-23. http://ic4i-journal.ir/article-1-307-en.html [In Persian]
Broekhuizen, T., Dekker, H., de Faria, P., Firk, S., Nguyen, D. K., & Sofka, W. (2023). AI for managing open innovation: Opportunities, challenges, and a research agenda. Journal of Business Research, 167(3), 114196. https://doi.org/10.1016/j.jbusres.2023.114196
Cheng, Y., & Jiang, H. (2021). Customer-brand relationship in the era of artificial intelligence: Understanding the role of chatbot marketing efforts. Journal of Product and Brand Management, 31(2), 252-264. https://doi.org/10.1108/JPBM-05-2020-2907
Chun Tie, Y., Birks, M., & Francis, K. (2019). Grounded theory research: A design framework for novice researchers. SAGE Open Medicine, 7(3), 1-8. https://doi.org/10.1177/2050312118822927
CIPR. (2023). CIPR report finds AI tools in public relations set to explode. Retrived from: https://newsroom.cipr.co.uk/cipr-report-finds-ai-tools-in-public-relations-set-to-explode/
Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory. UK: Sage publications. https://psycnet.apa.org/doi/10.4135/9781452230153
Corbin, J., & Strauss, A. (2012). Basics of qualitative research : techniques and procedures for developing grounded theory. Tehran: Andishe Rafi Publisher. [In Persian]
Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). London: SAGE. https://docs.edtechhub.org/lib/XAH8M47G
Creswell, J. W. (2019). Educational Research: Planning, conducting, and Evaluating Quantitative and Qualitative Research. New York: Pearson. http://thuvienso.bvu.edu.vn/handle/TVDHBRVT/20941
Czarnitzki, D., Fernández, G. P. & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211(3), 188-205. https://doi.org/10.1016/j.jebo.2023.05.008
Danaeifard, H., & Emami, S. M. (2007). Strategies of Qualitative Research: A Reflection on Grounded Theory. Strategic Management Thought, 1(2), 69-97. https://doi.org/10.30497/smt.2007.104 [In Persian]
Davenport, T., & Prusak, L. (1998). Working Knowledge: How Organizations Manage What They Know. Harvard Business School Press, 15. https://doi.org/10.1145/348772.348775
Durmuş Şenyapar, H. N. (2024). The Future of Marketing: The Transformative Power of Artificial Intelligence. International Journal of Management and Administration, 8(15), 1-19. https://doi.org/10.29064/ijma.1412272
Elfaki, K., & Ahmed, E. (2024). Digital technology adoption and globalization innovation implications on Asian Pacific green sustainable economic growth. Journal of Open Innovation Technology Market and Complexity, 10(1), 1-10. https://doi.org/10.1016/j.joitmc.2024.100221
Florea, N. V., & Croitoru, G. (2025). The Impact of Artificial Intelligence on Communication Dynamics and Performance in Organizational Leadership. Administrative Sciences, 15(2), 33. https://doi.org/10.3390/admsci15020033
Galloway, C., & Swiatek, L. (2018). Public relations and artificial intelligence: It’s not (just) about robots. Public Relations Review, 44(5), 734-740. https://doi.org/10.1016/j.pubrev.2018.10.008
George, A. S. (2024). The Fourth Industrial Revolution: A Primer on Industry 4.0 and its Transformative Impact. Partners Universal Innovative Research Publication, 2(1), 16-40. https://doi.org/10.5281/zenodo.10671872
Gkikas, D., & Theodoridis, P. (2022). AI in Consumer Behavior. In book: Advances in Artificial Intelligence-based Technologies (pp.147-176), Chapter 10, Publisher: Springer Cham. https://doi.org/10.1007/978-3-030-80571-5_10
Haefner, N., Parida, V., Gassmann, O., & Wincent, J. (2023). Implementing and scaling artificial intelligence: A review, framework, and research agenda. Technological Forecasting and Social Change, 197(1): 122878. https://doi.org/10.1016/j.techfore.2023.122878
Hariguna, T., & Ruangkanjanases, A. (2024). Assessing the impact of artificial intelligence on customer performance: A quantitative study using partial least squares methodology. Data Science and Management, 7(3), 155-163. https://doi.org/10.1016/j.dsm.2024.01.001
Holbrook, M. B. & Hirschman, E. C. (1982) The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 9(1), 132-140.
http://dx.doi.org/10.1086/208906
Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational Readiness to Adopt Artificial Intelligence in the Exhibition Sector in Western Europe. International Journal of Information Management, 65(1), 102497. https://doi.org/10.1016/j.ijinfomgt.2022.102497
Jain, R., Aagja, J. & Bagdare, S. (2017). Customer experience – a review and research agenda. Journal of Service Theory and Practice, 27(3), 642-662. https://doi.org/10.1108/JSTP-03-2015-0064
Jeong, J., & Park, N. (2023). Examining the Influence of Artificial Intelligence on Public Relations: Insights from the Organization-Situation-Public-Communication (OSPC) Model. Asia-pacific Journal of Convergent Research Interchange, 9(7), 485-495. https://doi.org/10.47116/apjcri.2023.07.38
Jiang, H., Cheng, Y., Yang, J., & Gao, S. (2022). AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Computers in Human Behavior, 134(3): 107329. https://doi.org/10.1016/j.chb.2022.107329
Kar, U., Dash, R., McMurtrey, M., & Rebman, C. (2019). Application of Artificial Intelligence in Automation of Supply Chain Management. Journal of Strategic Innovation and Sustainability, 14(3), 43-53. https://doi.org/10.33423/jsis.v14i3.2105
Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, Article 101925. https://doi.org/10.1016/j.tele.2022.101925
Konjkav Monfared, A. R., Saeida Ardakani, S., Malekpour, L., Barootkoob, M., & Mohebali Malmiri, M. (2020). Analyzing the Impact of Technological Innovation and Resource Commitment on Knowledge Management Capabilities to Increase the Competitive Advantage (Case Study: Knowledge Based Companies in Yazd Province). Strategic Management of Organizational Knowledge, 3(3), 147-175. (In Persian)
Kumar, D. & Suthar, N. (2024), "Ethical and legal challenges of AI in marketing: an exploration of solutions. Journal of Information, Communication and Ethics in Society, 22(1), 124-144. https://doi.org/10.1108/JICES-05-2023-0068
Kumar, s., & tanty, g. (2022). Setting the future of complete digital and social media marketing. The journal of applied management & entrepreneurship, 16(2), 105-112.
Lasswell, H. (1948). The structure and function of communication and society: The communication of idea (pp. 203–243). New York, NY: Institute for Religious and Social Studies. https://www.scirp.org/reference/referencespapers?referenceid=425949
Liew, F. E. E. (2021). Artificial Intelligence Disruption in Public Relations: A Blessing or A Challenge?. Journal of Digital Marketing and Communication, 1(1), 24-28. https://doi.org/10.53623/jdmc.v1i1.45
Marulanda-Echeverry, C. E., Castaño Vélez, A. P., & Mejía-Salazar, M. H. (2021). Organizational culture and knowledge cycle in the SMES of the tourist sector of the department of Caldas - Colombia: Organizational culture and knowledge cycle in the SMES of the tourist sector of the department of Caldas, Colombia. Scientia Et Technica, 26(2), 191–200. https://doi.org/10.22517/23447214.24507
Min, J., Kim, Y., Lee, S., Jang, T. W., Kim, I., Song, J. (2019). The Fourth Industrial Revolution and Its Impact on Occupational Health and Safety, Worker's Compensation and Labor Conditions. Saf Health Work, 10(4), 400-408. https://doi.org/10.1016/j.shaw.2019.09.005
Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The Impact of Artificial Intelligence on Workers’ Skills: Upskilling and Reskilling in Organisations. Informing Science, 26(1), 39-68. https://doi.org/10.28945/5078
Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, Luca. (2023). The Impact of Artificial Intelligence on Workers’ Skills: Upskilling and Reskilling in Organisations. Informing Science, 26(1), 39-68. https://doi.org/10.28945/5078
Murugesan, U., Subramanian, P., Srivastava, S., & Dwivedi, A. (2023). A study of Artificial Intelligence impacts on Human Resource Digitalization in Industry 4.0. Decision Analytics Journal, 7(5), 100249. https://doi.org/10.1016/j.dajour.2023.100249
Nirooei, A. (2024). Public Relations and Artificial Intelligence: An Emerging Relationship. Sociology of Communication Journal, 4(14), 65-74. https://jsc.daneshpajoohan.ac.ir/files/cd_papers/r_1_240409040408.pdf [In Persian]
Panda, G., Upadhyay, A. K., & Khandelwal, K. (2019). Artificial Intelligence: A Strategic Disruption in Public Relations. Journal of Creative Communications, 14(3), 196-213. https://doi.org/10.1177/0973258619866585
Pinto, R., & Bhadra, A. (2024). Smarter Public Relations with Artificial Intelligence: Leveraging Technology for Effective Communication Strategies and Reputation Management-A Qualitative Analysis. Revista electrónica de Veterinaria, 25(1), 2141-2149. https://doi.org/10.69980/redvet.v25i1.1028
Ramadani, I., Saepudin, E., Fadilah, S., Putri, R., Merlita, N., & Gunawan, R. (2024). Public relations activities as a management function in decision making in the bureau of public relations and protocol regional secretariat of banten province. Journal of politica governo, 1(2), 20-24. https://doi.org/10.62872/rwdexv60
Ramadhany, N., & McGuinness, G. (2024). Analyze How Can AI Facilitate the Communication and Collaboration Between Internal Departments and Their External Partners. Diponegoro Journal of Accounting, 13(4), 1-11. Retrived from: https://ejournal3.undip.ac.id/index.php/accounting/article/view/47762
Rashid, A., & Kausik, A. (2024). AI Revolutionizing Industries Worldwide: A Comprehensive Overview of Its Diverse Applications. Hybrid Advances, 7(7), 100277. https://doi.org/10.1016/j.hybadv.2024.100277
Soriano, A. & Valdés, R. (2021). Engaging universe 4.0: The case for forming a public relations-strategic intelligence hybrid. Public Relations Review, 47(2). https://doi.org/10.1016/j.pubrev.2021.102035
Tahanpour, S., Araei, V., Azimzadeh Irani, M., & Pourezat, A. (2024). The use of artificial intelligence and knowledge management in improving corporate governance a case study of mapna company. Strategic Management of Organizational Knowledge, 7(4), 154-175. https://doi.org/10.47176/smok.2024.1813 [In Persian]
Tavallaei, R. (2023). Interaction between humans and artificial intelligence in knowledge management. Strategic Management of Organizational Knowledge, 6(1), 11-21. https://doi.org/10.47176/smok.2023.1121 [In Persian]
Uren, V., & Edwards, J. (2022). Technology readiness and the organizational journey towards AI adoption: An empirical study. International Journal of Information Management, 68. 102588. https://doi.org/10.1016/j.ijinfomgt.2022.102588
Van Ruler, B. (2018). Communication Theory: An Underrated Pillar on Which Strategic Communication Rests. International Journal of Strategic Communication, 12(4), 367–381. https://doi.org/10.1080/1553118X.2018.1452240
Yang, J., Blount, Y., & Amrollahi, A. (2024). Artificial intelligence adoption in a professional service industry: A multiple case study. Technological Forecasting and Social Change, 201(C), 123251. https://doi.org/10.1016/j.techfore.2024.123251
Yaqub, M. Z., & Alsabban, A. (2023). Industry-4.0-Enabled Digital Transformation: Prospects, Instruments, Challenges, and Implications for Business Strategies. Sustainability, 15(11), 8553. https://doi.org/10.3390/su15118553
Yue, C. A., Men, L. R., Mitson, R., Davis, D. Z., & Zhou, A. (2024). Artificial intelligence for internal communication: Strategies, challenges, and implications. Public Relations Review, 50(5), 102515. https://doi.org/10.1016/j.pubrev.2024.102515
Zakrzewska, E. (2023). Use of Artificial Intelligence in public relations activities with examples of selected tool. Zeszyty Naukowe Akademii Górnośląskiej, 10(1), 31-40. https://doi.org/10.53259/2023.10.04
Zavodna, L.S., Überwimmer, M. & Frankus, E. (2024). Barriers to the implementation of artificial intelligence in small and medium-sized enterprises: Pilot study. Journal of Economics and Management, 46(1), 331-352. https://doi.org/10.22367/jem.2024.46.13
Zerfass, A., Hagelstein, J., & Tench, R. (2020). Artificial intelligence in communication management: a cross-national study on adoption and knowledge, impact, challenges and risks. Journal of Communication Management, ahead-of-print. https://doi.org/10.1108/JCOM-10-2019-0137
Zhang, W., Zeng, X., Liang, H., Xue, Y., & Cao, X. (2023). Understanding How Organizational Culture Affects Innovation Performance: A Management Context Perspective. Sustainability, 15(8), 6644. https://doi.org/10.3390/su15086644
Zhao, X. (2024). A Systematic Review of Public Relations Research in the Context of Artificial Intelligence. Communications in Humanities Research, 36(1), 92-101. https://doi.org/10.54254/2753-7064/36/2024BJ1000