طراحی سناریوهای استفاده از زنجیره های بلوکی دانشی در زنجیره تامین حلقه بسته شرکت‌های دانش بنیان (مورد مطالعه: پارک علم و فناوری یزد)

نوع مقاله : مطالعه موردی

نویسندگان

1 دانشجوی دکتری رشته مدیریت صنعتی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران

3 دانشیار گروه مدیریت صنعتی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران

4 دانشیار گروه مدیریت صنعتی دانشکده اقتصاد، مدیریت و حسابداری دانشگاه یزد

10.47176/smok.2023.1652

چکیده

امروز با توجه به حفظ محیط زیست و ایجاد درآمد پایدار، زنجیره تأمین حلقه بسته به عنوان راهی برای استفاده مجدد از محصولات در مرکز توجه قرار گرفته است. با این حال، استفاده از مدیریت دانش در این زنجیره‌ها بدون فناوری‌های مدرن مثل زنجیره بلوکی مشکل است. به همین منظور زنجیره‌های بلوکی دانشی شکل گرفته‌اند تا بتوانند این قابلیت‌ها را بهبود بخشند. از سوی دیگر شرکت‌های دانش بنیان در کشور در صورتی که بتوانند از مزایای زنجیره‌های بلوکی دانشی در ساختار زنجیره تأمین حلقه بسته خود استفاده نمایند؛ قادر خواهند بود تا مزیت‌های فراوانی را کسب نمایند. این پژوهش به عنوان یک تلاش نوآورانه در تطبیق مدیریت دانش با فناوری‌ مدرن زنجیره‌های بلوکی دانشی در زنجیره تأمین حلقه بسته شرکت‌های دانش‌بنیان صورت گرفته است. هدف این پژوهش، بهبود عملکرد و بهره‌وری این شرکت‌ها در مدیریت دانش و بهره‌گیری از زنجیره‌های بلوکی دانشی در زمینه زنجیره تأمین حلقه بسته است. بدین منظور در ابتدا با مطالعه پیشینه پژوهش، 10 عامل اثرگذر بر این پژوهش شناسایی گردید. در ادامه و به منظور تأیید اثرگذاری این عوامل بر استقرار زنجیره‌های بلوکی دانشی در زنجیره تأمین شرکت‌های دانش بنیان از آزمون میانگین تکی استفاده گردید. با تأیید 10 عامل اثرگذار و با استفاده از اطلاعات 14 شرکت دانش بنیان واقع در پارک علم و فناوری یزد و جمع‌آوری 83 پرسشنامه، وضعیت فعلی شرکت‌های دانش بنیان در استقرار زنجیره‌های بلوکی در زنجیره تأمین حلقه بسته آن‌ها با استفاده از تکنیک نقشه شناختی فازی شناسایی گردید. بر اساس ساختار سیستمی شکل گرفته، اقدام به طراحی سناریوی رو به عقب و رو به جلو گردید. نتایج پژوهش نشان می‌دهد که عامل قابلیت همکاری دارای بیشترین اثرگذاری بر رفتار سایر عوامل پژوهش دارد. از دیگر نتایج پژوهش می‌توان به نقش بالای عامل اطمینان از اعتبار و امنیت بر عامل قابلیت همکاری اشاره نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing knowledge blockchain use case scenarios in the closed loop supply chain of knowledge based companies (Case study: yazd sscience and technology park)

نویسندگان [English]

  • Pooria Malekinejad 1
  • Seyed Haidar Mirfakhardini 2
  • Ali Morovati sharif abadi 3
  • Seyed Mahmood Zanjirchi 4
1 PhD student in Industrial Management, Faculty of Economics, Management and Accounting, Yazd University, Yazd, Iran
2 Professor, Department of Industrial Management, Yazd University, Yazd, Iran
3 Associate Professor, Department of Industrial Management, Yazd University, Yazd, Iran
4 Associate Professor, Department of Industrial Management, Yazd University, Yazd, Iran
چکیده [English]

Today, with regard to preserving the environment and generating sustainable income, the closed-loop supply chain is at the center of attention as a means to reuse products. However, utilizing knowledge management in these chains without modern technologies such as blockchain is challenging. For this purpose, knowledge blockchains have been developed to enhance these capabilities. On the other hand, knowledge-based companies in the country, if they can harness the benefits of knowledge blockchains in their closed-loop supply chain structure, will be able to gain many advantages. This research has been conducted as an innovative effort to integrate knowledge management with the modern technology of knowledge blockchains in the closed-loop supply chain of knowledge-based companies. The objective of this research is to improve the performance and efficiency of these companies in knowledge management and the utilization of knowledge blockchains in the field of the closed-loop supply chain. To achieve this goal, first, by reviewing the research background, 10 factors influencing this research were identified. Subsequently, to validate the impact of these factors on the implementation of knowledge blockchains in the supply chain of knowledge-based companies, a One sample t test was employed. By confirming the influence of 10 significant factors and utilizing data from 14 knowledge-based companies situated in Yazd Science and Technology Park and collecting 83 questionnaires, the current status of knowledge-based companies in implementing blockchains in their closed-loop supply chain was identified using the fuzzy cognitive map technique. Based on the developed system structure, backward and forward scenarios were designed. The research findings indicate that the cooperation factor exerts the greatest influence on the behavior of other research factors. Among other results of the research, we can highlight the significant role of the reliability and security assurance factor compared to the interoperability factor.

کلیدواژه‌ها [English]

  • Knowledge-based companies
  • closed-loop supply chains
  • knowledge blockchain
  • knowledge management

Smiley face

Abbasi, S., Daneshmand-Mehr, M., & Ghane Kanafi, A. (2023). Green closed-loop supply chain network design during the coronavirus (COVID-19) pandemic: A case study in the Iranian Automotive Industry. Environmental Modeling & Assessment, 28(1), 69-103.
Akbari Ganjeh, S., Moosavi, A. R., Heidarzadeh Hanzaee, K., & Abdolvand, M. (2022). Designing a Blockchain-Based Smart Sales Contract Model in Knowledge-Based Companies Using a Grounded Theory. Iranian Journal of Trade Studies, 26(102), 133-156.
Akbarpoor, M., & Tizroo, A. (2022). Futures studies of the strategy of knowledge-based companies with a scenario approach. Scientific Journal of Organizational Knowledge Management, 5(18), 69-110. https://www.magiran.com/paper/2510378
Akhavan, P., Philsoophian, M., Rajabion, L., & Namvar, M. (2018). Developing a block-chained knowledge management model (BCKMM): beyond traditional knowledge management. Akhavan, Peyman, Philsoophian, Maryam, Rajabion, Lila and Morteza Namvar (2018), Developing a Block-Chained Knowledge Management Model (BCKMM): Beyond Traditional Knowledge Management, The 19th European Conference on Knowledge Management (ECKM 2018), September, Italy,
ali, s., & masoumeh zeydi, a. (2023). Recognizing and understanding the phenomenon of managers' cognitive fatigue; Analysis of influencing factors and outcomes with fuzzy cognitive mapping method (research sample: knowledge-based companies in Lorestan province). Scientific Journal of Organizational Knowledge Management, 6(20), 209-239. https://www.magiran.com/paper/2565191
arefnezhad, M., & mousavi, m. (2023). Fuzzy Cognitive Mapping Factors Affecting Knowledge Hooser in the Organization (Case Study: Lorestan University). Scientific Journal of Organizational Knowledge Management, 5(19), 47-74. https://www.magiran.com/paper/2537344
Asghari, M., Afshari, H., Mirzapour Al-e-hashem, S., Fathollahi-Fard, A. M., & Dulebenets, M. A. (2022). Pricing and advertising decisions in a direct-sales closed-loop supply chain. Computers & Industrial Engineering, 171, 108439.
Bamakan, S. M. H., Malekinejad, P., Ziaeian, M., & Motavali, A. (2021). Bullwhip effect reduction map for COVID-19 vaccine supply chain. Sustainable Operations and Computers, 2, 139-148.
Baralla, G., Ibba, S., Marchesi, M., Tonelli, R., & Missineo, S. (2019). A blockchain based system to ensure transparency and reliability in food supply chain. Euro-Par 2018: Parallel Processing Workshops: Euro-Par 2018 International Workshops, Turin, Italy, August 27-28, 2018, Revised Selected Papers 24,
Bashokouh, M., & hamedani, I. G. (2023). Investigating the Effect of Knowledge Management on the Performance and loyalty of Employees with the Moderating Role of Innovation (Case Study: Employees of Tabriz Petrochemical Company). Scientific Journal of Organizational Knowledge Management, 5(19), 75-109. https://www.magiran.com/paper/2537345
Battini, D., Bogataj, M., & Choudhary, A. (2017). Closed loop supply chain (CLSC): economics, modelling, management and control. In (Vol. 183, pp. 319-321): Elsevier.
Bekrar, A., Ait El Cadi, A., Todosijevic, R., & Sarkis, J. (2021). Digitalizing the closing-of-the-loop for supply chains: A transportation and blockchain perspective. Sustainability (Switzerland), 13(5), 2895.
De Giovanni, P. (2022). Leveraging the circular economy with a closed-loop supply chain and a reverse omnichannel using blockchain technology and incentives. International Journal of Operations & Production Management, 42(7), 959-994.
Fill, H.-G. (2019). Applying the Concept of Knowledge Blockchains to Ontologies. AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering,
Fill, H.-G., & Härer, F. (2018). Knowledge blockchains: Applying blockchain technologies to enterprise modeling.
Frozza, T., de Lima, E. P., & da Costa, S. E. G. (2023). Knowledge Management and Blockchain Technology for Organizational Sustainability: Conceptual Model. Brazilian Journal of Operations & Production Management, 20(2), 1354-1354.
Gadekallu, T. R., Huynh-The, T., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q.-V., da Costa, D. B., & Liyanage, M. (2022). Blockchain for the metaverse: A review. arXiv preprint arXiv:2203.09738.
Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603-626.
Guillon, D., Villeneuve, E., Merlo, C., Vareilles, E., & Aldanondo, M. (2021). ISIEM: A methodology to deploy a knowledge-based system to support bidding process. Computers & Industrial Engineering, 161, 107638.
Hartono, B., Siagian, H., & Tarigan, Z. (2023). The effect of knowledge management on firm performance. mediating role of production technology, supply chain integration, and green supply chain. Uncertain Supply Chain Management, 11(3), 1133-1148.
Hastig, G. M., & Sodhi, M. S. (2020). Blockchain for supply chain traceability: Business requirements and critical success factors. Production and Operations Management, 29(4), 935-954.
Hosseini, E., Saeida Ardekani, S., Sabokro, M., & Salamzadeh, A. (2022). The study of knowledge employee voice among the knowledge-based companies: the case of an emerging economy. Revista de Gestão, 29(2), 117-138.
Hrouga, M., Sbihi, A., & Chavallard, M. (2022). The potentials of combining Blockchain technology and Internet of Things for digital reverse supply chain: a case study. Journal of Cleaner Production, 337, 130609.
Hu, L., Zhou, J., Zhang, J. Z., & Behl, A. (2023). Blockchain technology adaptation and organizational inertia: moderating role between knowledge management processes and supply chain resilience. Kybernetes.
Irfan, I., Sumbal, M. S. U. K., Khurshid, F., & Chan, F. T. (2022). Toward a resilient supply chain model: critical role of knowledge management and dynamic capabilities. Industrial Management & Data Systems, 122(5), 1153-1182.
Javadpour, A., AliPour, F. S., Sangaiah, A. K., Zhang, W., Ja'far, F., & Singh, A. (2023). An IoE blockchain-based network knowledge management model for resilient disaster frameworks. Journal of Innovation & Knowledge, 8(3), 100400.
Jum’a, L. (2023). The role of blockchain-enabled supply chain applications in improving supply chain performance: the case of Jordanian manufacturing sector. Management Research Review.
Kabir, M. N. (2019). Knowledge-based social entrepreneurship: Understanding knowledge economy, innovation, and the future of social entrepreneurship. Springer.
Kaderka, R., Mundt, R. C., Li, N., Ziemer, B., Bry, V. N., Cornell, M., & Moore, K. L. (2019). Automated closed-and open-loop validation of knowledge-based planning routines across multiple disease sites. Practical Radiation Oncology, 9(4), 257-265.
Khan, A. A., & Abonyi, J. (2022). Information sharing in supply chains-Interoperability in an era of circular economy. Cleaner Logistics and Supply Chain, 100074.
Khan, S. A., Naim, I., Kusi-Sarpong, S., Gupta, H., & Idrisi, A. R. (2021). A knowledge-based experts’ system for evaluation of digital supply chain readiness. Knowledge-Based Systems, 228, 107262.
Khare, A., Jain, S. K., & Rathore, V. KNOWLEDGE MANAGEMENT WITH BLOCKCHAIN TECHNOLOGY IN BUSINESS: ATheoretical PERSPECTIVE.
Kitsantas, T., & Chytis, E. (2022). Blockchain Technology as an Ecosystem: Trends and Perspectives in Accounting and Management. Journal of theoretical and applied electronic commerce research, 17(3), 1143-1161.
Krichen, M., Ammi, M., Mihoub, A., & Almutiq, M. (2022). Blockchain for modern applications: A survey. Sensors, 22(14), 5274.
Li, Z.-P., Ceong, H.-T., & Lee, S.-J. (2021). The effect of blockchain operation capabilities on competitive performance in supply chain management. Sustainability (Switzerland), 13(21), 12078.
Li, Z., Wang, W. M., Liu, G., Liu, L., He, J., & Huang, G. Q. (2018). Toward open manufacturing: A cross-enterprises knowledge and services exchange framework based on blockchain and edge computing. Industrial Management & Data Systems, 118(1), 303-320.
Liao, S., Fu, L., & Liu, Z. (2020). Investigating open innovation strategies and firm performance: the moderating role of technological capability and market information management capability. Journal of Business & Industrial Marketing, 35(1), 23-39.
Liu, J., Zhang, H., & Zhen, L. (2023). Blockchain technology in maritime supply chains: Applications, architecture and challenges. International Journal of Production Research, 61(11), 3547-3563.
Manesh, M. F., Pellegrini, M. M., Marzi, G., & Dabic, M. (2020). Knowledge management in the fourth industrial revolution: Mapping the literature and scoping future avenues. IEEE Transactions on Engineering Management, 68(1), 289-300.
Markus, S., & Buijs, P. (2022). Beyond the hype: how blockchain affects supply chain performance. Supply Chain Management: An International Journal, 27(7), 177-193.
Monfared, A. R. K., Ardakani, S. S., Malekpour, L., Barootkoob, M., & Malmiri, M. M. (2020). Analyzing the Impact of Technological Innovation and Resource Commitment on Knowledge Management Capabilities to Increase the Competitive Advantage (Case Study: Knowledge Based Companies in Yazd Province). Scientific Journal of Organizational Knowledge Management, 3(10), 147-175. https://www.magiran.com/paper/2209581
Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain. Business & Information Systems Engineering, 59, 183-187.
Nyame, G., Qin, Z., Obour Agyekum, K. O.-B., & Sifah, E. B. (2020). An ECDSA approach to access control in knowledge management systems using blockchain. Information (Switzerland), 11(2), 111.
Papaioannou, T. G., Stankovski, V., Kochovski, P., Simonet-Boulogne, A., Barelle, C., Ciaramella, A., Ciaramella, M., & Stamoulis, G. D. (2021). A New Blockchain Ecosystem for Trusted, Traceable and Transparent Ontological Knowledge Management: Position Paper. Economics of Grids, Clouds, Systems, and Services: 18th International Conference, GECON 2021, Virtual Event, September 21–23, 2021, Proceedings 18,
Pasdar, A., Lee, Y. C., & Dong, Z. (2023). Connect API with blockchain: A survey on blockchain oracle implementation. ACM Computing Surveys, 55(10), 1-39.
Peres, R., Schreier, M., Schweidel, D. A., & Sorescu, A. (2022). Blockchain meets marketing: Opportunities, threats, and avenues for future research. In: Elsevier.
Peungchuer, A., Tirasriwat, A., Mathew, A., & Tridechapol, N. (2019). Factors Affecting the Assurance of Savings in the Cooperatives from the Perspective of Member:: A Case Study of Assumption University Savings & Credit Cooperative Limited (AUSCC). The Journal of Risk Management and Insurance, 23(2), 58-76.
Pham, C. M., Lokuge, S., Nguyen, T.-T., & Adamopoulos, A. (2023). Exploring knowledge management enablers for blockchain-enabled food supply chain implementations. Journal of Knowledge Management.
Philsoophian, M., Akhavan, P., & Namvar, M. (2022). The mediating role of blockchain technology in improvement of knowledge sharing for supply chain management. Management Decision, 60(3), 784-805.
Prajapati, D., Jauhar, S. K., Gunasekaran, A., Kamble, S. S., & Pratap, S. (2022). Blockchain and IoT embedded sustainable virtual closed-loop supply chain in E-commerce towards the circular economy. Computers & Industrial Engineering, 172, 108530.
Priyambodo, D., Berawi, M., & Sari, M. (2021). The development of blockchain based knowledge management system model at EPC projects to improve project time performance. International Conference on Rehabilitation and Maintenance in Civil Engineering,
Qi, H., & Li, G. (2022). An evolutionary game analysis on knowledge-sharing mechanism of the innovation consortiums in the blockchain era. Procedia Computer Science, 214, 1484-1491.
Rajabi-Kafshgar, A., Gholian-Jouybari, F., Seyedi, I., & Hajiaghaei-Keshteli, M. (2023). Utilizing hybrid metaheuristic approach to design an agricultural closed-loop supply chain network. Expert Systems with Applications, 217, 119504.
Ronaghi, M. H. (2021). The Effects of Blockchain Technology on Corporate Governance and Corporate Social Responsibility in Knowledge-Based Companies in IT industry. Journal of Entrepreneurship Development, 14(1), 61-80.
Ruangkanjanases, A., Hariguna, T., Adiandari, A. M., & Alfawaz, K. M. (2022). Assessing blockchain adoption in supply chain management, antecedent of technology readiness, knowledge sharing and trading need. Emerg. Sci. J, 6, 921-937.
Sachan, S., Fickett, D. S., Kyaw, N. E. E., Purkayastha, R. S., & Renimol, S. (2023). A Blockchain Framework in Compliance with Data Protection Law to Manage and Integrate Human Knowledge by Fuzzy Cognitive Maps: Small Business Loans. 2023 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
Schniederjans, D. G., Curado, C., & Khalajhedayati, M. (2020). Supply chain digitisation trends: An integration of knowledge management. International Journal of Production Economics, 220, 107439.
Seydanlou, P., Jolai, F., Tavakkoli-Moghaddam, R., & Fathollahi-Fard, A. M. (2022). A multi-objective optimization framework for a sustainable closed-loop supply chain network in the olive industry: Hybrid meta-heuristic algorithms. Expert Systems with Applications, 203, 117566.
Sezer, M. D., Ozbiltekin-Pala, M., Kazancoglu, Y., Garza-Reyes, J. A., Kumar, A., & Kumar, V. (2023). Investigating the role of knowledge-based supply chains for supply chain resilience by graph theory matrix approach. Operations Management Research, 1-11.
Shekarian, E. (2020). A review of factors affecting closed-loop supply chain models. Journal of Cleaner Production, 253, 119823.
Soleimani, H., Chhetri, P., Fathollahi-Fard, A. M., Mirzapour Al-e-Hashem, S., & Shahparvari, S. (2022). Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics. Annals of Operations Research, 318(1), 531-556.
Sun, Y., Shahzad, M., & Razzaq, A. (2022). Sustainable organizational performance through blockchain technology adoption and knowledge management in China. Journal of Innovation & Knowledge, 7(4), 100247.
Tan, T. M., & Saraniemi, S. (2022). Trust in blockchain-enabled exchanges: Future directions in blockchain marketing. Journal of the Academy of marketing Science, 1-26.
Tavana, M., Kian, H., Nasr, A. K., Govindan, K., & Mina, H. (2022). A comprehensive framework for sustainable closed-loop supply chain network design. Journal of Cleaner Production, 332, 129777.
Verma, M. (2021). Amalgamation of Blockchain Technology and Knowledge Management System to fetch an enhanced system in Library. International Journal of Innovative Research in Technology, 7(11), 474-477.
Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchain-based framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111, 103063.
Xie, R., & Zhang, W. (2023). Online knowledge sharing in blockchains: towards increasing participation. Management Decision.
Xu, X., Gu, J., Yan, H., Liu, W., Qi, L., & Zhou, X. (2022). Reputation-aware supplier assessment for blockchain-enabled supply chain in industry 4.0. IEEE Transactions on Industrial Informatics, 19(4), 5485-5494.
Zahedi, N., & Hamidi, N. (2019). the impact of online store purchasing characteristics on customer purchasing intentions (Case Study: Bamilo Online Shopping Store and Digikala Online Shopping Store). Journal of Accounting and Management Vision, 2(10), 49-66.
Zhang, X., Li, Y., Peng, X., Zhao, Z., Han, J., & Xu, J. (2022). Information traceability model for the grain and oil food supply chain based on trusted identification and trusted blockchain. International Journal of Environmental Research and Public Health, 19(11), 6594.
Zhang, X., Vogel, D. R., & Zhou, Z. (2012). Effects of information technologies, department characteristics and individual roles on improving knowledge sharing visibility: a qualitative case study. Behaviour & Information Technology, 31(11), 1117-1131.